CHAPTER - 17 SPECIAL TYPES OF QUADRALATERALS

EXERCISE 17

Question 1.

In parallelogram ABCD, $\angle A = 3$ times $\angle B$. Find all the angles of the parallelogram. In the same parallelogram, if AB = 5x - 7 and CD = 3x +1; find the length of CD. **Solution:**

Question 2.

In parallelogram PQRS, $\angle Q = (4x - 5)^{\circ}$ and $\angle S = (3x + 10)^{\circ}$. Calculate : $\angle Q$ and $\angle R$. Solution: In parallelogram PQRS, $\angle Q = (4x - 5)^{\circ}$ and $\angle S = (3x + 10)^{\circ}$

opposite \angle s of //gm are equal. $\angle Q = \angle S$ 4x - 5 = 3x + 10 4x - 3x = 10+5 x = 15 $\angle Q = 4x - 5 = 4 \times 15 - 5 = 55^{\circ}$ Also $\angle Q + \angle R = 180^{\circ}$ $55^{\circ} + \angle R = 180^{\circ}$ $\angle R = 180^{\circ} - 55^{\circ} = 125^{\circ}$ $\angle Q = 55^{\circ}$; $\angle R = 125^{\circ}$

Question 3.

In rhombus ABCD ; (i) if $\angle A = 74^{\circ}$; find $\angle B$ and $\angle C$. (ii) if AD = 7.5 cm ; find BC and CD. **Solution:** AD || BC $\angle A + \angle B = 180^{\circ}$ $74^{\circ} + \angle B = 180^{\circ}$

opposite angles of Rhombus are equal. $\angle A = \angle C = 74^{\circ}$ Sides of Rhombus are equal. BC = CD = AD = 7.5 cm (i) $\angle B = 106^{\circ}$; $\angle C = 74^{\circ}$ (ii) BC = 7.5 cm and CD = 7.5 cm Ans.

Question 4. In square PQRS :

(i) if PQ = 3x - 7 and QR = x + 3; find PS (ii) if PR = 5x and QR = 9x - 8. Find QS **Solution:**

(i) sides of square are equal.

As diagonals of square are equal. PR = QS 5x = 9x - 8 $\Rightarrow 5x - 9x = -8$ $\Rightarrow -4x = -8$ $\Rightarrow x = 2$ $QS = 9x - 8 = 9 \times 2 - 8 = 10$

Question 5.

ABCD is a rectangle, if \angle BPC = 124° Calculate : (i) \angle BAP (ii) \angle ADP

Solution:

Diagonals of rectangle are equal and bisect each other. $\angle PBC = \angle PCB = x \text{ (say)}$ But $\angle BPC + \angle PBC + \angle PCB = 180^{\circ}$ $124^{\circ} + x + x = 180^{\circ}$ $2x = 180^{\circ} - 124^{\circ}$ $2x = 56^{\circ}$ $\Rightarrow x = 28^{\circ}$ $\angle PBC = 28^{\circ}$ But $\angle PBC = \angle ADP \text{ [Alternate } \angle s]$ $\angle ADP = 28^{\circ}$ Again $\angle APB = 180^{\circ} - 124^{\circ} = 56^{\circ}$ Also PA = PB $\angle BAP = \frac{1}{2} (180^{\circ} - \angle APB)$ $= \frac{1}{2} x (180^{\circ} - 56^{\circ}) = \frac{1}{2} x 124^{\circ} = 62^{\circ}$ Hence (i) $\angle BAP = 62^{\circ}$ (ii) $\angle ADP = 28^{\circ}$

Question 6.

ABCD is a rhombus. If $\angle BAC = 38^{\circ}$, find : (i) $\angle ACB$ (ii) $\angle DAC$ (iii) $\angle ADC$.

Solution: ABCD is Rhombus (Given) AB = BC $\angle BAC = \angle ACB (\angle s \text{ opp. to equal sides})$ But $\angle BAC = 38^{\circ}$ (Given) $\angle ACB = 38^{\circ}$

```
In \triangle ABC,

\angle ABC + \angle BAC + \angle ACB = 180^{\circ}

\angle ABC + 38^{\circ} + 38^{\circ} = 180^{\circ}

\angle ABC = 180^{\circ} - 76^{\circ} = 104^{\circ}

But \angle ABC = \angle ADC (opp. \angle s of rhombus)

\angle ADC = 104^{\circ}

\angle DAC = \angle DCA (AD = CD)

\angle DAC = \frac{1}{2} [180^{\circ} - 104^{\circ}]

\angle DAC = \frac{1}{2} x 76^{\circ} = 38^{\circ}

Hence (i) \angle ACB = 38^{\circ} (ii) \angle DAC = 38^{\circ} (iii) \angle ADC = 104^{\circ} Ans.
```

Question 7.

ABCD is a rhombus. If \angle BCA = 35°. find \angle ADC. **Solution: Given :** Rhombus ABCD in which \angle BCA = 35°

To find : $\angle ADC$ Proof : AD || BC $\angle DAC = \angle BCA$ (Alternate $\angle s$) But $\angle BCA = 35^{\circ}$ (Given) $\angle DAC = 35^{\circ}$ But $\angle DAC = \angle ACD$ (AD = CD) & $\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$ $35^{\circ} + 35^{\circ} + \angle ADC = 180^{\circ}$ $\angle ADC = 180^{\circ} - 70^{\circ} = 110^{\circ}$ Hence $\angle ADC = 110^{\circ}$

Question 8.

PQRS is a parallelogram whose diagonals intersect at M. If $\angle PMS = 54^{\circ}$, $\angle QSR = 25^{\circ}$ and $\angle SQR = 30^{\circ}$; find : (i) $\angle RPS$ (ii) $\angle PRS$ (iii) $\angle PSR$. **Solution: Given :** ||gm PQRS in which diagonals PR & QS intersect at M. $\angle PMS = 54^{\circ}$; $\angle QSR = 25^{\circ}$ and $\angle SQR = 30^{\circ}$

To find : (i) \angle RPS (ii) \angle PRS (iii) \angle PSR Proof : QR || PS => \angle PSQ = \angle SQR (Alternate \angle s) But \angle SQR = 30° (Given) \angle PSQ = 30° In \triangle SMP, \angle PMS + \angle PSM + \angle MPS = 180° or 54° + 30° + \angle RPS = 180° \angle RPS = 180° - 84° = 96° Now \angle PRS + \angle RSQ = \angle PMS \angle PRS + 25° =54° \angle PRS = 54° - 25° = 29° \angle PSR = \angle PSQ + \angle RSQ = 30°+25° = 55° Hence (i) \angle RPS = 96° (ii) \angle PRS = 29° (iii) \angle PSR = 55°

Question 9.

Given : Parallelogram ABCD in which diagonals AC and BD intersect at M. **Prove :** M is mid-point of LN. **Solution:**

Proof : Diagonals of //gm bisect each other. MD = MB $Also \angle ADB = \angle DBN \text{ (Alternate } \angle s)$ $\& \angle DML = \angle BMN \text{ (Vert. opp. } \angle s)$ $\Delta DML = \Delta BMN$ LM = MN M is mid-point of LN. Hence proved.

Question 10.

In an Isosceles-trapezium, show that the opposite angles are supplementary. **Solution:**

Given : ABCD is isosceles trapezium in which AD = BC **To Prove :** (i) $\angle A + \angle C = 180^{\circ}$ (ii) $\angle B + \angle D = 180^{\circ}$ **Proof :** $AB \parallel CD$. => $\angle A + \angle D = 180^{\circ}$ But $\angle A = \angle B$ [Trapezium is isosceles)] $\angle B + \angle D = 180^{\circ}$ Similarly $\angle A + \angle C = 180^{\circ}$ Hence the result.

Question 11.

ABCD is a parallelogram. What kind of quadrilateral is it if :
(i) AC = BD and AC is perpendicular to BD?
(ii) AC is perpendicular to BD but is not equal to it ?
(iii) AC = BD but AC is not perpendicular to BD ?
Solution:

$$AC = ED$$
 (Given)
& AC \perp BD (Given)

i.e. Diagonals of quadrilateral are equal and they are $\perp r$ to each other.

```
: ABCD is square
```

(*ii*)

AC \perp BD (Given) But AC & BD are not equal \therefore ABCD is a Rhombus. (*iii*)

AC = BD but AC & BD are not $\perp r$ to each other.

: ABCD is a Rectangle.

Question 12.

Prove that the diagonals of a parallelogram bisect each other. **Solution:**

Given : ||gm ABCD in which diagonals AC and BD bisect each other. **To Prove :** OA = OC and OB = OD **Proof :** AB || CD (Given) $\angle 1 = \angle 2 (alternate \angle s)$ $\angle 3 = \angle 4 = (alternate \angle s)$ and AB = CD (opposite sides of //gm) \triangle COD = \triangle AOB (A.S.A. rule) OA = OC and OB = OD Hence the result.

Question 13.

If the diagonals of a parallelogram are of equal lengths, the parallelogram is a rectangle. Prove it.

Solution:

Given : //gm ABCD in which AC = BD **To Prove** : ABCD is rectangle. **Proof** : In \triangle ABC and \triangle ABD AB = AB (Common) AC = BD (Given) BC = AD (opposite sides of ||gm) \triangle ABC = \triangle ABD (S.S.S. Rule) \angle A = \angle B But AD // BC (opp. sides of ||gm are ||) \angle A + \angle B = 180° \angle A = \angle B = 90° Similarly \angle D = \angle C = 90° Hence ABCD is a rectangle.

Question 14.

In parallelogram ABCD, E is the mid-point of AD and F is the mid-point of BC. Prove that BFDE is a parallelogram.

Given : //gm ABCD in which E and F are mid-points of AD and BC respectively. **To Prove** : BFDE is a ||gm. **Proof** : E is mid-point of AD. (Given) $DE = \frac{1}{2} AD$ Also F is mid-point of BC (Given) $BF = \frac{1}{2} BC$ But AD = BC (opp. sides of ||gm) BF = DEAgain AD || BC => DE || BF Now DE || BF and DE = BF Hence BFDE is a ||gm.

Question 15.

In parallelogram ABCD, E is the mid-point of side AB and CE bisects angle BCD. Prove that :

(i) AE = AD,

(ii) DE bisects and ∠ADC and

(iii) Angle DEC is a right angle.

Solution:

Given : ||gm ABCD in which E is mid-point of AB and CE bisects ZBCD. **To Prove :** (i) AE = AD(ii) DE bisects ∠ADC (iii) $\angle DEC = 90^{\circ}$ Const. Join DE Proof: (i) AB || CD (Given) and CE bisects it. $\angle 1 = \angle 3$ (alternate $\angle s$)(i) But $\angle 1 = \angle 2$ (Given) (ii) From (i) & (ii) $\angle 2 = \angle 3$ BC = BE (sides opp. to equal angles) But BC = AD (opp. sides of ||gm) and BE = AE (Given) AD = AE $\angle 4 = \angle 5$ ($\angle s$ opp. to equal sides)

But $\angle 5 = \angle 6$ (alternate $\angle s$)

=> ∠4 = ∠6 DE bisects ∠ADC. Now AD // BC => ∠D + ∠C = 180° 2∠6+2∠1 = 180° DE and CE are bisectors. ∠6 + ∠1 = $\frac{180^{\circ}}{2}$ ∠6 + ∠1 = 90° But ∠DEC + ∠6 + ∠1 = 180° ∠DEC + 90° = 180° ∠DEC = 180° - 90° ∠DEC = 90° Hence the result.

Question 16.

In the following diagram, the bisectors of interior angles of the parallelogram PQRS enclose a quadrilateral ABCD.

Show that:

(i) $\angle PSB + \angle SPB = 90^{\circ}$

(ii) $\angle PBS = 90^{\circ}$

(iii) $\angle ABC = 90^{\circ}$

(iv) $\angle ADC = 90^{\circ}$

$$(v) \angle A = 90^{\circ}$$

(vi) ABCD is a rectangle

Thus, the bisectors of the angles of a parallelogram enclose a rectangle.

Solution:

Given : In parallelogram ABCD bisector of angles P and Q, meet at A, bisectors of $\angle R$ and $\angle S$ meet at C. Forming a quadrilateral ABCD as shown in the figure.

To prove :

(i) $\angle PSB + \angle SPB = 90^{\circ}$ (ii) $\angle PBS = 90^{\circ}$ (iii) $\angle ABC = 90^{\circ}$ (iv) $\angle ADC = 90^{\circ}$ (v) $\angle A = 9^{\circ}$ (vi) ABCD is a rectangle **Proof :** In parallelogram PQRS, PS || QR (opposite sides) $\angle P + \angle Q = 180^{\circ}$ and AP and AQ are the bisectors of consecutive angles $\angle P$ and $\angle Q$ of the parallelogram $\angle APQ + \angle AQP = \frac{1}{2} \times 180^\circ = 90^\circ$ But in $\triangle APQ$. $\angle A + \angle APQ + \angle AQP = 180^{\circ}$ (Angles of a triangle) $\angle A + 90^{\circ} = 180^{\circ}$ $\angle A = 180^{\circ} - 90^{\circ}$ $(v) \angle A = 90^{\circ}$ Similarly PQ || SR $\angle PSB + SPB = 90^{\circ}$ (ii) and $\angle PBS = 90^{\circ}$ But, $\angle ABC = \angle PBS$ (Vertically opposite angles) (iii) $\angle ABC = 90^{\circ}$ Similarly we can prove that (iv) $\angle ADC = 90^{\circ} \text{ and } \angle C = 90^{\circ}$ (vi) ABCD is a rectangle (Each angle of a guadrilateral is 90°) Hence proved.

Question 17.

In parallelogram ABCD, X and Y are midpoints of opposite sides AB and DC respectively. Prove that:

(i) AX = YC

(ii) AX is parallel to YC

(iii) AXCY is a parallelogram.

Solution:

Given : In parallelogram ABCD, X and Y are the mid-points of sides AB and DC respectively AY and CX are joined

To prove :

(i) AX = YC

(ii) AX is parallel to YC

(iii) AXCY is a parallelogram

Proof : AB || DC and X and Y are the mid-points of the sides AB and DC respectively (i) $AX = XC \left(\frac{1}{2} \text{ of appasite sides of a parallelegram}\right)$

(i) AX = YC ($\frac{1}{2}$ of opposite sides of a parallelogram)

(ii) and AX || YC

(iii) AXCY is a parallelogram (A pair of opposite sides are equal and parallel) Hence proved.

Question 18.

The given figure shows parallelogram ABCD. Points M and N lie in diagonal BD such that DM = BN.

Prove that:

(i) $\triangle DMC = \triangle BNA$ and so CM = AN

(ii) $\triangle AMD = \triangle CNB$ and so AM CN

(iii) ANCM is a parallelogram.

Solution:

Given : In parallelogram ABCD, points M and N lie on the diagonal BD such that DM = BN

AN, NC, CM and MA are joined

To prove :

(i) $\triangle DMC = \triangle BNA$ and so CM = AN (ii) $\triangle AMD = \triangle CNB$ and so AM = CN (iii) ANCM is a parallelogram **Proof :** (i) In $\triangle DMC$ and $\triangle BNA$. CD = AB (opposite sides of ||gm ABCD) DM = BN (given) $\angle CDM = \angle ABN$ (alternate angles) $\triangle DMC = \triangle BNA$ (SAS axiom) CM =AN (c.p.c.t.) Similarly, in $\triangle AMD$ and $\triangle CNB$ AD = BC (opposite sides of ||gm)

DM = BN (given)

 $\angle ADM = \angle CBN - (alternate angles)$

 $\triangle AMD = \triangle CNB$ (SAS axiom)

AM = CN (c.p.c.t.)

(iii) CM = AN and AM = CN (proved)

ANCM is a parallelogram (opposite sides are equal) Hence proved.

Question 19.

The given figure shows a rhombus ABCD in which angle $BCD = 80^{\circ}$. Find angles x and y.

In rhombus ABCD, diagonals AC and BD bisect each other at 90° $\angle BCD = 80^{\circ}$ Diagonals bisect the opposite angles also $\angle BCD = \angle BAD$ (Opposite angles of rhombus) $\angle BAD = 80^{\circ}$ and $\angle ABC = \angle ADC = 180^{\circ} - 80^{\circ} = 100^{\circ}$ Diagonals bisect opposite angles $\angle OCB$ or $\angle PCB = \frac{80^{\circ}}{2} = 40^{\circ}$ In $\triangle PCM$, Ext. CPD = $\angle OCB + \angle PMC$ $110^{\circ} = 40^{\circ} + x$ $=> x = 110^{\circ} - 40^{\circ} = 70^{\circ}$ and $\angle ADO = \frac{1}{2} \angle ADC = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$ Hence $x = 70^{\circ}$ and $y = 50^{\circ}$

Question 20.

Use the information given in the alongside diagram to find the value of x, y and z.

Solution:

ABCD is a parallelogram and AC is its diagonal which bisects the opposite angle Opposite sides of a parallelogram are equal

3x + 14 = 2x + 25 $\Rightarrow 3x - 2x = 25 - 14$ $\Rightarrow x = 11$ $\therefore x = 11 \text{ cm}$ $\angle DCA = \angle CAB \text{ (Alternate angles)}$ $y + 9^{\circ} = 24$ $y = 24^{\circ} - 9^{\circ} = 15^{\circ}$ $\angle DAB = 3y^{\circ} + 5^{\circ} + 24^{\circ} = 3 \times 15 + 5 + 24^{\circ} = 50^{\circ} + 24^{\circ} = 74^{\circ}$ $\angle ABC = 180^{\circ} - \angle DAB = 180^{\circ} - 74^{\circ} = 106^{\circ}$ $z = 106^{\circ}$ Hence x = 11 cm, y = 15^{\circ}, z = 106^{\circ}

Question 21.

The following figure is a rectangle in which x : y = 3 : 7; find the values of x and y.

Solution: ABCD is a rectangle, x : y = 3 : 1In $\triangle BCE$, $\angle B = 90^{\circ}$ $x + y = 90^{\circ}$ But x : y = 3 : 7Sum of ratios = 3 + 7 = 10

$$\therefore x = \frac{90^{\circ} \times 3}{10} = 27^{\circ}$$

and
$$y = \frac{90^{\circ} \times 7}{10} = 63^{\circ}$$

Hence $x = 27^{\circ}, y = 63^{\circ}$

Hence $x = 27^{\circ}$, $y = 63^{\circ}$

Question 22.

In the given figure, AB // EC, AB = AC and AE bisects \angle DAC. Prove that:

(i) $\angle EAC = \angle ACB$ (ii) ABCE is a parallelogram. **Solution:** ABCE is a quadrilateral in which AC is its diagonal and AB || EC, AB = AC BA is produced to D AE bisects $\angle DAC$ **To prove:** (i) $\angle EAC = \angle ACB$

```
(ii) ABCE is a parallelogram

Proof:

(i) In \triangleABC and \triangleZAEC

AC=AC (common)

AB = CE (given)

\angleBAC = \angleACE (Alternate angle)

\triangleABC = \triangleAEC (SAS Axiom)

(ii) \angleBCA = \angleCAE (c.p.c.t.)

But these are alternate angles

AE || BC

But AB || EC (given)

\therefore ABCD is a parallelogram
```